Mathématiques

Question

Bonjour c'est urgent j'ai un devoir maison à rendre pour demain et je n'y arrive pas si vous pouvez m'aidez sa serai génial merci.
Bonjour c'est urgent j'ai un devoir maison à rendre pour demain et je n'y arrive pas si vous pouvez m'aidez sa serai génial merci.

1 Réponse

  • ³Exercice n° 2

    La pyramide AHFG  été découpée dans un cube de côté 16 cm

    1) Quelle est la nature du triangle HGF ?
    Le triangle est équilatéral
    Justifier : Théorème de Pythagore
    HF² = FG² + GH²
    HF² = 16² + 16²
    HF² = 128 + 128
    HF² = √256
    HF = 16cm
    Les trois côtés sont égaux, il s'agit bien d'un triangle équilatéral.

    2) Volume de la pyramide :
    Le volume d'un tétraèdre (pyramide à base triangulaire) est égal au tiers du produit de l'aire de sa base par sa hauteur.
    Formule : V = 1/3 × aire de la Base × h
    La base est HGF c'est à dire la moitié de l'aire HEFG (= 16²)  
    La hauteur correspond à l'arête AH=16 cm ;

    Par conséquent Aire de la base HFG = 1/2 × 16² = 128 cm³
    Volume : 1/3 × 128 × 16 = 682 cm³

    Exercice 3

    1ère partie

    Le schéma est plus clair pas besoin de le refaire (merci)

    a] Volume d'un pavé droit = L × l × h
    Volume de ABCDEFGH = 10,5 × 10 × 14 =  1470

    b] Volume d'une pyramide à base rectangulaire = L × l × h
    Volume de la pyramide SABCD = 1/3 × 10,5 × 10 × 12 = 420

    c) Volume de la lanterne = 1470 + 420 = 1 890
    La lanterne a un volume de 1 890 cm³

    2/ On donne OC = 7,25 cm
    a] calcul de SC avec le théorème de Pythagore puisque le triangle SOC est rectangle en O.

    SC² = OC² + SO²
    SC² = 7,25² + 12²
    SC² = 52,5625 + 144
    SC² =√196.5625
    SC = 14, 02
    La mesure de SC est de 14 cm.

    b] calculer la mesure de l'angle OSC
    Cos angle OSC = Côté adjacent / hypoténuse
    Cos angle OSC = 12 / 14
    Le cos vaut 0,8571422857
    Avec la calculatrice scientifique je cherche la mesure de l'angle...
    La calculatrice affiche : 31,0186
    L'angle OSC mesure 31°
    (On peut aussi calculer avec la Tangente = côté opposé / côté adjacent...)


    2ème partie

    V(x) = 1470 + 35x

    Or la valeur de x = SO
    et SO = 12 cm

    Calcul : V(x) = 1470 + 35 × 12
    V(x) = 1470 + 420
    V(x) = 1 890 cm³

    3) V(x) = 1470 + 35x
    Il s'agit de résoudre l'équation V(x) = 1862

    Donc je résous :
    1 470 + 35x = 1 862
    35x = -1 470 + 1 862
    35x = 392

    35x ÷ 35 = 392 ÷ 35
            x     = 11,2

    Pour un volume de lanterne égal à 1862 cm³ la valeur de x = 11,2 cm
    La hauteur de la pyramide serait alors de 11,2 cm.


    Ouf c'est fini !

    Vérifie bien les calculs, une erreur est toujours possible !