Bonjour à tous, quelqu'un peut il m'aider sur: *comment peut on determiner une équation de la parabole P sachant que cette parabole a pour sommet S(4;5) et un p
Mathématiques
Babafemi703
Question
Bonjour à tous,
quelqu'un peut il m'aider sur:
*comment peut on determiner une équation de la parabole P sachant que cette parabole a pour sommet S(4;5) et un point A(2;3)???
**On suppose que a, b et c sont dans cet ordre, trois termes consécutifs d'une suite géométrique, determiner ces nombres sachant que :
a+b+c=260 et c-a=160
si quelqu'un peut m'aider ca serait très gentil de sa part je suis très coincé,
merci d'avance
quelqu'un peut il m'aider sur:
*comment peut on determiner une équation de la parabole P sachant que cette parabole a pour sommet S(4;5) et un point A(2;3)???
**On suppose que a, b et c sont dans cet ordre, trois termes consécutifs d'une suite géométrique, determiner ces nombres sachant que :
a+b+c=260 et c-a=160
si quelqu'un peut m'aider ca serait très gentil de sa part je suis très coincé,
merci d'avance
1 Réponse
-
1. Réponse redak69
d abord l equation de la parabole est y=ax²+bx+c=f(x)
f(2)=3 donc 4a+2b+c=3
f(4)=5 donc 16a+4b+c=5
on cherche la derivée de f
f'(x)= 2ax+b
f'(4)=0 donc 8a+b=0
alors le resoud de systeme suivant
4a+2b+c=3
16a+4b+c=5
8a+b =0
a+b+c=260 et c-a =160
on pose a=b/r ; b=b ; c=b.r
on a b/r +b+b.r=260 donc b(1/r+1+r)= 260 .....(1)
on a b.r-b/r=160 donc b(r-1/r)=160.....................(2)
(1)=(2) on obtient
160(1/r+r+1)=260(r-1/r ) donc
5r²-8r-21=0
delta=121 d ou la racine est 11
donc il ya deux solutions
r =3 ou r= -7/5
Pour r=3
donc b=60
a= 20
c=180
Pour r=-7/5
b= -700/3
a=500/3
c= 4900/15
on peut verifier ces resultats dans l enoncé merci