Mathématiques

Question

On souhaite construire un enclos rectangulaire le long d une rivière on ne dispose que de 320m de clôture . Détermine les dimensions de la clôture permettant d obtenir une surface maximal a l intérieur de l enclos

1 Réponse

  • On suppose que la rivière constitue le 4ème côté du rectangle.
    Soit x la largeur et y la longueur de l'enclos.
    On a y+2x=320 soit y=320-2x
    L'aire de l'enclos est xy=x(320-2x)=320x-2x²
    Notons A(x) l'aire de l'enclos en fonction de la largeur x
    A(x)=320x-2x²=-2(x²-160x)=-2(x²-2*80*x+80²-80²)=2*6400-2(x-80)²=12800-2(x-80)²
    Comme (x-80)²≥0 l'aire est maximale pour x=80
    Donc les dimensions de l'enclos sont x=80m et y=320-2*80=160
    L'aire maximale est 160*80=12800 m²

Autres questions